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Rates for the emission of  
pheromones by female moths 

are on the order of  a few 
picograms/s. Typical molecular 

weight of  pheromone 
components is a few hundred 

Daltons. 



Draft et al., JEB, 2018

Olfactory trail tracking

Widening casts



Migration Ecology of  Birds, Ian Newton

Thermal soaring by birds

Weimerskirch et al., Science ‘16

Akos, Nagy, Vicsek, PNAS, ‘08



A bit of  history…

Thermal and 
ridge soaring

Dynamic
and gust soaring

da Vinci, ca 1513-1515
P. Richardson, “da Vinci's discovery of  the dynamic soaring by birds in wind shear", 2018

Lord Rayleigh, 1883: ”…Whenever therefore a bird pursues his course for some time 
without working his wings, we must conclude either
1. that the course is not horizontal,
2. that the wind is not horizontal, or
3. that the wind is not uniform.

It is probable that the truth is usually represented by (1) or (2); but the question I wish 
to raise is whether the cause suggested by (3) may not sometimes come into operation."



Technological
applications

Olfactory robots: 
applications to detection 
of  chemical leaks, drugs, 
bombs, land and/or sea 
mines, sources of  toxic 
substances, etc. 

and is inferior to more active exploration—for example, systematic
search in a particular sector29 .

To balance exploration and exploitation, we propose the following
‘infotaxis’ strategy. At each time step, the searcher chooses the dir-
ection that locally maximizes the expected rate of information
acquisition. Specifically, the searcher chooses, among the neighbour-
ing sites on a lattice and standing still, the move that maximizes the
expected reduction in entropy of the posterior probability field.

Expectations are based on the information currently available, that
is, the field Pt(r0) itself. The intuitive idea is that entropy decreases
(and thus information accumulates) faster close to the source
because cues arrive at a higher rate, hence tracking the maximum
rate of information acquisition will guide the searcher to the source
much like concentration gradients in chemotaxis.

Suppose that the searcher has arrived at r at time t, and gathered
information is stored into the field Pt(r0) having entropy S. The
variation of entropy expected upon moving to one of the neighbour-
ing points rj (or standing still) is:
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The first term on the right-hand side corresponds to finding the
source, that is, Pt11 becoming a d-function and entropy becoming
zero, which occurs with estimated probability Pt(rj). The second term
on the right-hand side corresponds to the alternative case when the
source is not found at rj. Symbols rk(rj) denote the probability that k
detections be made at rj during a time-step Dt, given by a Poisson law
rk 5 hke2h/k! for independent detections. The expected number of
hits is estimated as h rj

! "
:Dt

Ð
Pt r0ð ÞR rj jr0

! "
dr0, with R(rjr0)

denoting the mean rate of hits at position r if the source is located
in r0 (see Methods). The symbols DSk in equation (1) denote the
change of entropy between the fields Pt11(r0) and Pt(r0). Two effects
contribute to DSk: first, Pt11(rj) ; 0 because the source was not
found; and second, the estimated posterior probabilities are modified
by the k cues received. The first term on the right-hand side of
equation (1) is the exploitative term, weighing only the event that
the source is found at the point rj and favouring motion to maximum
likelihood points. The second term on the right-hand side of equa-
tion (1) is the information gain from receiving additional cues. It
appears even when the searcher does not move, and thus represents
conservative ‘exploration’. Thus we explicitly see that infotaxis nat-
urally combines exploitative and exploratory tendencies (see
Supplementary Information for details of this point and for quant-
itative comparisons among different strategies).

Figure 1 | Typical infotactic trajectories. a, Without wind; b, with wind.
Simulations are performed for a model of odour spreading where detectable
‘particles’ are emitted at rate R, have a lifetime t, propagate with diffusivity D
(combining turbulent and molecular diffusion) and are advected by a mean
wind V. The wind in b is directed downwards. The greyscale represents the
mean detection rate, decaying exponentially at large distances. In each panel,
the searcher starts from the black filled triangle, the colour code on the
trajectories is linear in the elapsed time, and odour detections are indicated
by black filled circles. Note the long lags with no particle detections,
characteristic of searches in dilute conditions.
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Figure 2 | Quantitative characterization of infotaxis searches. a, Scaling of
the average search time with the initial distance to the source. The mean path
of particles during their lifetime is 50. The linear scaling at large distances
compares favourably with the exponential time needed to average out
concentration noise. Error bars indicate s.d. b, The exponential decay of the
search time probability distribution function (PDF), indicating that
infotaxis is not plagued by strong fluctuations. c, The residual time to locate
the source plotted against the entropy of the estimated source location PDF.
The exponential dependence of the residual time indicates that reducing
entropy is effective in ensuring a rapid search process.
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Infotaxis, 
Nature ‘07

UAVs for surveillance, delivery, 
monitoring (and, of  course, drones)



Why does 
physics matter? 

Cremer et al., 
Nature, Chemotaxis 
as a navigation 
strategy to boost 
range expansion, 
2019



Statistics of  odor detections

Concentration 
fields are very 
different than 
diffusive ones.

Falkovich et 
al., Rev. Mod. 
Phys., 2001

Reddy et al., 
Ann. Rev. 
Cond. Matter 
Phys., 2022



Why could we make progress? 
(Celani et al., Phys. Rev. X, ‘14; APS Physics Synopsis)
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We are interested in the 
integral over time and the 
source is larger than the 
folds. We can try 
integrating over the 
internal structure, i.e. 
track only the size and the 
position of  the puff



Whiff and blank duration
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Model turbulent flow (Reddy et al., PNAS, 2016)

The profile of  vertical velocity vs hour of  the day



Why does Machine 
Learning, namely 

Reinforcement Learning, 
matter? 



An “optimally” behaving agent: the 
reinforcement learning framework

States s — sensorimotor cues + bank angle + angle of  attack
Actions a — modify angles

Learns empirical statistics and rewards solely through experience
Model-free 

http://www.incompleteideas.net/book/the-book-2nd.html.
(see Section 16.8 p. 453 for thermal soaring)

Policy:

st st+1 st+2
at at+1 at+2
rt+1 rt+2 rt+3 …..…..

Action-Value :



Learning by TD

• TD update:    

• Policy: 

+

After ~200 
5-minute 
“training 
episodes” in 
different 
simulated 
thermal 
environments 
(Reddy et al., 
PNAS)

start

end

end

start



Sensory-motor cues
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body rotation are the most 
useful cues



Learned flight policy

More risk-averse policy for strong fluctuations

Weak fluctuations Strong fluctuations



In the field (Reddy et al., Nature, 2018)
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Learning works in the field



Alternation in olfactory searches
(Rigolli et al., eLife, 2022)

Alternation 
between 

sniffing in the 
air and on the 

ground

Far downwind of  
the source, the 
benefits of  higher 
encounters with 
rare airborne cues 
outweigh the cost 
of  pausing its 
movement. 

RL and theory to show that



A new paradigm for trail tracking 
(Reddy, Shraiman, MV, PNAS, 2022)

v Velocity-accuracy tradeoff

v Surge-casting  

v Dashed trails: aperture of  the search sector  

Time giving up is ∝ estimated trail’s 
correlation length

The animal uses past detections to build an estimate of  the 
future trail’s heading and searches the corresponding sector  



A. Celani 
(ICTP)

G. Reddy (UCSD; 
Harvard)

T. Sejnowski (Salk)

J. Wong-Ng 
(UCSD; 
Institut 
Pasteur)

B. Shraiman 
(KITP)

E. Villermaux 
(Marseille)

V. Murthy 
(Harvard)N. Rigolli (U. Genoa;

ENS Paris)

CURRICULUM VITAE

PERSONAL INFORMATION

Name NICOLA RIGOLLI

Address VIA MILITE IGNOTO 3/6, 16039, SESTRI LEVANTE (GE) – ITALY

Telephone (+39) 320 2484982

E-mail nicorigol@gmail.com

Nationality Italian

Date of birth 9th October 1994  (23)

EDUCATION

12 July 2018 Expected Master thesis dissertation. Title “The role of geometry in lipid transport”

2016 - present Enrolled in “Laurea magistrale in Fisica” (Master’s degree in Physics) at University of Genova

2013 - 2016 “Laurea triennale in Fisica” (Bachelor’s degree in Physics) at University of Genova with a final 
mark 110/110 

2008 - 2013 High school degree at “Liceo statale scientifico G. Marconi Chiavari” with a specialization in 
science final mark 100/100

PROFESSIONAL 
EXPERIENCE

25-29 June 2018 Participate and present a poster at International Summer School “Computational principles to 
organize complexity: success stories in quantitative biology”.

January 2018 Participate to “Université Cote d’Azur Complex Days” 

January-June 2018 Internship Academie 4 (Binome de Master) at INPHYNI in Nice. Title of the project: “The role of 
geometry in lipid transport” supervisors A Seminara (INPHYNI) and N. Magnoli (Dept Physics 
University of Genova)

September 2017 Participate to superconductivity challenge Hackathon at CERN

June 2017 Attended Machine Learning Crash Course at Computer Science Department (University of 
Genova)

2017 – present Volunteers in Refugees Welcome Italia (Genova)

2012 – present Private Physics and Mathematics tutoring to high school and university students  

2012 – present Scientific Animator at “Science Festival” in Genova

2009  – present Fellowship Fondazione Mario e Lina Zavattaro (Rotary Club Rapallo) for worthy students

PERSONAL SKILLS AND COMPETENCES

MOTHER TONGUE ITALIAN

OTHER LANGUAGES ENGLISH , BASIC FRENCH 

IT C++, MATLAB, LabView, LaTex.

A. Seminara (U. Genoa)



If  flapping:

For migration of  a 1000km:

About 500 grams of  fat 
> 25% of  body mass

Steppe eagle

Soaring energetics

G.K.Taylor, K. Reynolds, A. Thomas, Phil. Trans. B, 2016

u ground; v air; w wind velocities: u=v+w



Measuring vertical wind accelerations
GPS/baro

modeling

Ground vel.

Glider vel.Wind vel.

Pi
tc

h(
o )

20 s

-8

8

Phugoid

Measuringverticalwindvelocity gradients

5o

vz

1-2 meters

change in bank = feedback 
control + aerodynamics + 
wind gradients

Pitch+angle 
of  attack



Credit assignment and reward shaping
Vertical velocity as a reward would be the natural choice, 

yet it does not work while vertical accelerations do

Policy optimal for  a given reward  is also optimal when
taking “discrete time derivatives” of  the reward

A
ut

oc
or

re
la

tio
n

t/(kolmogorov scale) t/(integral scale)

Accelerations Velocities

Yeung and Pope, 
JFM, 1989



Can a bird sense the relevant cues? 
“artistic” view of  turbulence The predicted behavior 

for torque sensing is l1/6 

due to the stronger 
fluctuations generated by 
bigger eddies over the 
wingspan as l increases 

l/l1/3 * (VT/l)1/2



Cross-country

The goal is not just to stay aloft, but use soaring to 
fly between two predetermined locations rapidly and 

without engine (or using it as little as possible)
With Mirko Indumi, William Stewart & Davide Zambrano at EPFL 



Birds 

Williams et 
al. 2018 
JEB

Horvitz et al. Ecology Lett., ‘14



Dynamic soaring 

Rayleigh, Nature, 1883
Richardson, Progr. Oceanography, 2011
Bousquet et al, J. R. Soc. Interface, 2017



Learning works in the field as well


