

Learning to navigate

turbulent environments

Massimo Vergassola

Long-distance olfactory searches

CNIS

David et al., Nature, '83

Moth released

Olfactory trail tracking

Porter et al, Nat. Neuro., 2007

Thermal soaring by birds

Akos, Nagy, Vicsek, PNAS, '08

Migration Ecology of Birds, Ian Newton

Weimerskirch et al., Science '16

A bit of history...

$$\dot{E} = -vD + mg\mathbf{w}_z - m\mathbf{v}.\frac{d\mathbf{w}}{dt}$$

$$(\partial \mathbf{w} + ds \partial \mathbf{w})$$

Lord Rayleigh, 1883: "...Whenever therefore a bird pursues his course for some time without working his wings, we must conclude either

- 1. that the course is not horizontal,
- 2. that the wind is not horizontal, or
- 3. that the wind is not uniform.

It is probable that the truth is usually represented by (1) or (2); but the question I wish

to raise is whether the cause suggested by (3) may not sometimes come into operation."

Dynamic and gust soaring

Thermal and ridge soaring da Vinci, ca 1513-1515 P. Richardson, "da Vinci's discovery of the dynamic soaring by birds in wind shear", 2018

Technological applications

UAVs for surveillance, delivery, monitoring (and, of course, drones)

Infotaxis, Nature '07

Olfactory robots: applications to detection of chemical leaks, drugs, bombs, land and/or sea mines, sources of toxic substances, etc.

Why does physics matter?

2 cm

Cremer et al., Nature, Chemotaxis e as a navigation strategy to boost range expansion, 2019

- unoccupied region (high conc of nutrients and attract.)
- pioneers (growing and migrating on attractant gradient)
- settlers (growing and randomly moving)
- colonized region (cells not growing or moving)

Statistics of odor detections

Concentration fields are very different than diffusive ones.

Falkovich et al., Rev. Mod. Phys., 2001

Reddy et al., Ann. Rev. Cond. Matter Phys., 2022

Why could we make progress?

(Celani et al., Phys. Rev. X, '14; APS Physics Synopsis)

We are interested in the integral over time and the source is larger than the folds. We can try integrating over the internal structure, i.e. track only the size and the position of the puff

Model turbulent flow (Reddy et al., PNAS, 2016)

The profile of vertical velocity vs hour of the day

B

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla P + \left(\frac{Pr}{Ra}\right)^{1/2} \nabla^2 u + \theta \hat{z},$$

$$\frac{\partial \theta}{\partial t} + u \cdot \nabla \theta = \frac{1}{(Pr Ra)^{1/2}} \nabla^2 \theta,$$

Why does Machine Learning, namely Reinforcement Learning, matter?

Reinforcement Learning An Introduction second edition

Richard S. Sutton and Andrew G. Barto

observation

An "optimally" behaving agent: the reinforcement learning framework

Action-Value :
$$Q(s_t, a_t) = \underbrace{r_{t+1}}_{\text{reward}} + \underbrace{\beta Q(s_{t+1}, a_{t+1})}_{\text{sum of future rewards}}, \quad 0 \le \beta < 1$$

Policy:
$$\pi_s^a = \arg \max_{a'} Q(s, a')$$

Learns empirical statistics and rewards solely through experience **Model-free**

http://www.incompleteideas.net/book/the-book-2nd.html. (see Section 16.8 p. 453 for thermal soaring)

States s — sensorimotor cues + bank angle + angle of attack Actions a — modify angles

- **TD** update: $Q(s,a) \rightarrow Q(s,a) + \eta(r + \beta Q(s',a') Q(s,a))$
- Policy: $\pi_s^a \propto \exp\left(-\hat{Q}(s,a)/\tau\right)$

Sensory-motor cues

Upward acceleration and body rotation are the most useful cues

Learned flight policy

More risk-averse policy for strong fluctuations

In the field (Reddy et al., Nature, 2018)

Learning works in the field

Alternation in olfactory searches (Rigolli et al., eLife, 2022)

Alternation between sniffing in the air and on the ground

RL and theory to show that

Far downwind of the source, the benefits of higher encounters with rare airborne cues outweigh the cost of pausing its movement.

The animal uses past detections to build an estimate of the future trail's heading and searches the corresponding sector

Time giving up is ∝ estimated trail's correlation length

N. Rigolli (U. Genoa; **ENS** Paris)

T. Sejnowski (Salk)

UC SANTA BARBARA

Kavli Institute for

Theoretical Physics

A. Celani (ICTP)

V. Murthy (Harvard)

INSTITUT PASTEUR

E. Villermaux (Marseille)

G. Reddy (UCSD;

CNIS

B. Shraiman (KITP)

J. Wong-Ng (UCSD; Institut Pasteur)

National Institutes of Health

Soaring energetics

$$\dot{E} = v(T - D) + mg\mathbf{w}_z - m\mathbf{v}.\frac{d\mathbf{w}}{dt}$$

u ground; **v** air; **w** wind velocities: **u**=**v**+**w**

If flapping:
$$T = D \approx \frac{1}{2}\rho S C_D v^2$$

For migration of a 1000km:

 $\Delta E \approx 5000 \text{ kcal}$

About 500 grams of fat > 25% of body mass

G.K.Taylor, K. Reynolds, A. Thomas, Phil. Trans. B, 2016

Steppe eagle

 $S \approx 0.5 \mathrm{m}^2$ $C_D \approx 0.3$ $\mathrm{v} \approx 15 \mathrm{m/s}$ $m \approx 2 \mathrm{kg}$

Measuring vertical wind accelerations

Measuring vertical wind velocity gradients

change in bank = feedback
control + aerodynamics +
wind gradients

Policy optimal for a given reward is also optimal when taking "discrete time derivatives" of the reward

Can a bird sense the relevant cues?

"artistic" view of turbulence

The predicted behavior for torque sensing is $l^{1/6}$ due to the stronger fluctuations generated by bigger eddies over the wingspan as l increases

 $l/l^{1/3} * (VT/l)^{1/2}$

 $\frac{\omega}{\delta v} \sim l^{1/6} (VT)^{1/2}$

 $\frac{a_z}{\delta a_z} \sim (VT)^{2/3}$

 $\delta v \sim l^{1/3}$ $n \sim VT/l$

Cross-country

The goal is not just to stay aloft, but use soaring to fly between two predetermined locations rapidly and without engine (or using it as little as possible) With Mirko Indumi, William Stewart & Davide Zambrano at EPFL

Decision-making challenge	Phase	Flight performance currency		Flight property	Behavioral control
How to climb a thermal?	TC	Climb rate		Circling radius	Bank angle
When to leave a thermal?	TC	Flight time		Height (above ground)	Flight-phase shift
Which speed to glide?	ITG	Forward displacement and sink rate		RAFI (Horvitz et al. 2014)	Angle of attack
Where is the next thermal?	ITG	TC-ITG efficiency (see text)		ITG path straightness (see text)	Flight direction
How to avoid sinking air sections?	ITG	Sink rate		Mean ITG sink rate	Flight direction
When/where to flap?	both	Climb/sink rate a	and forward displacement	Flapping rate	Flight-mode shift
Thermal climbing Inter- phase (TC)	thermal bhase (IT	gliding G)	TC	ITG	тс

Birds

100 m

Horvitz et al. Ecology Lett., '14

Adult vultures outperform juveniles in challenging thermal soaring conditions

Roi Harel, Nir Horvitz & Ran Nathan

Rayleigh Cycle

Rayleigh, Nature, 1883 Richardson, Progr. Oceanography, 2011 Bousquet et al, J. R. Soc. Interface, 2017

Learning works in the field as well

