Dispersion in granular media: rheology, diffusion, segregation

Pierre Jop

Glass surface and interfaces CNRS/ Saint-Gobain Research Paris

Frontiers of mixing – Cargèse summer school 2023

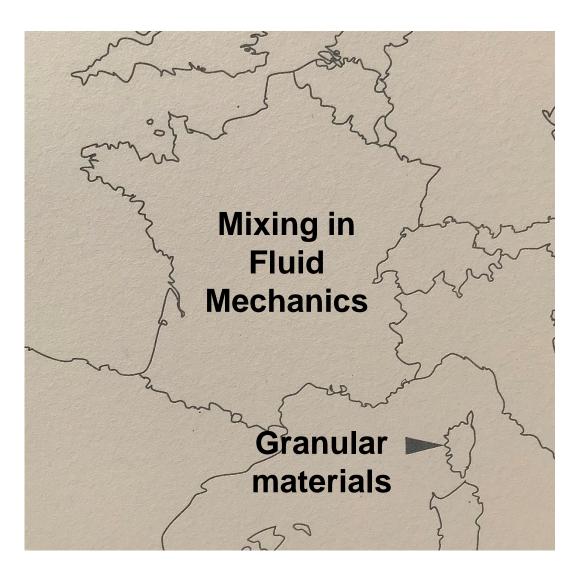
Dispersion in granular media

Granular media

Rheology

Diffusion

Segregation

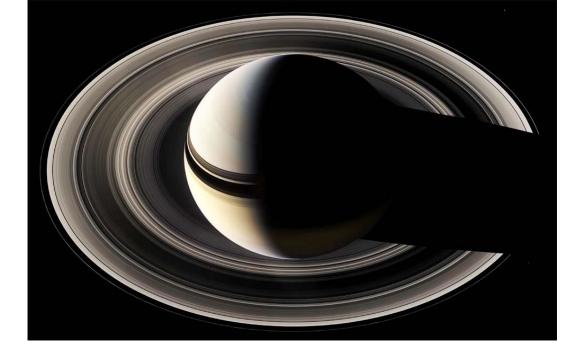


Industrial context

Materials as granular media are the 2nd most frequently used

Food Mining Building materials Chemical engineering Pharmaceutical

Issues for storage, transport, process



In every day life

Mixing is ubiquitous in industry

Food industry

- Usually in close batch (sanitary issues)
- Textural properties, rheology

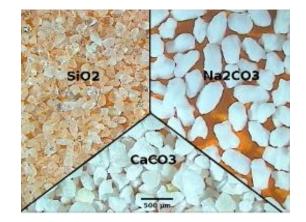
Chemical products

Pharmaceutical

• Homogeneity, mostly powders

Building materials

Cohesive grains from sand grains in glass production to powders



Grains/powders

+ liquids

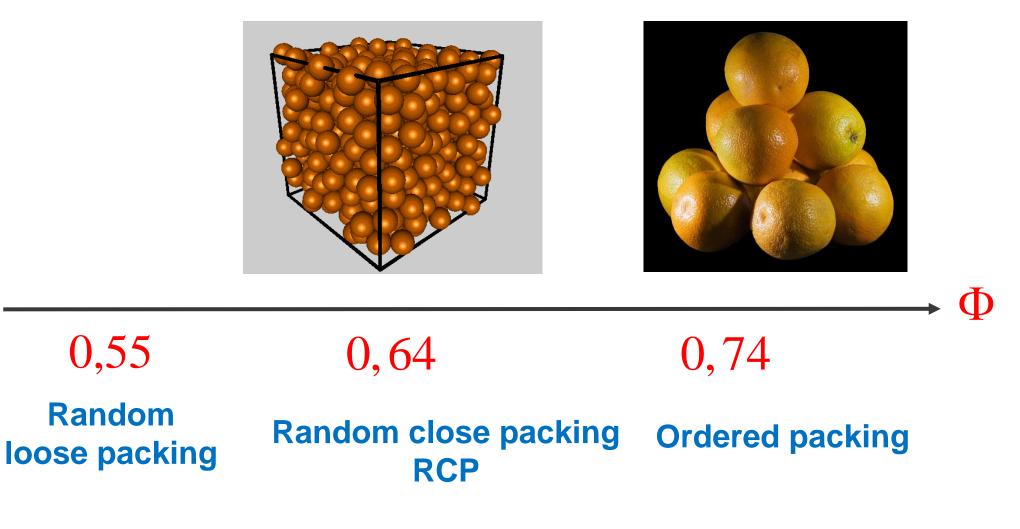
GRANULAR MATERIALS

Large particles : no thermal energy $kT \ll mgd$ no Brownian motion

Hard particles : steric exclusion

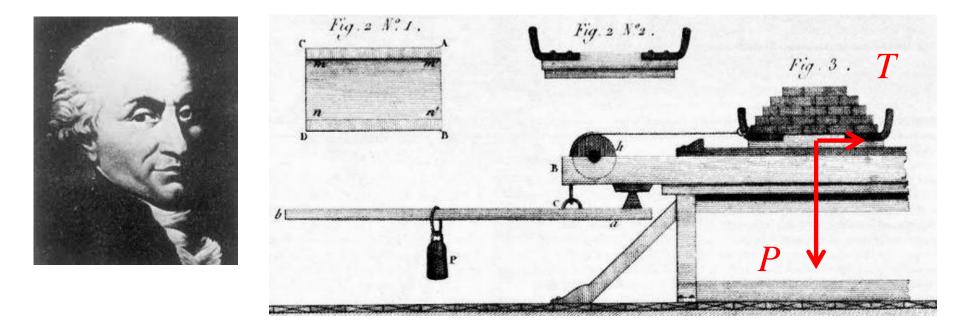
friction, cohesion, viscous fluids between grains in contact

SOLID FRACTION Φ



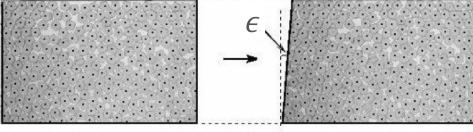
J. Kepler (1611), T. Hales (2014)

Charles-Augustin Coulomb 1736-1806

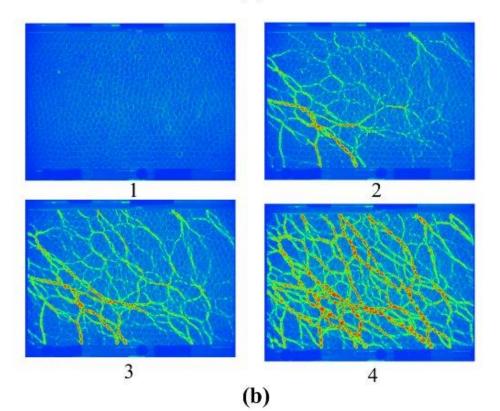


The tangential force T is equal to the normal force P times a friction coefficient µ

 $T=\mu P$



(a)

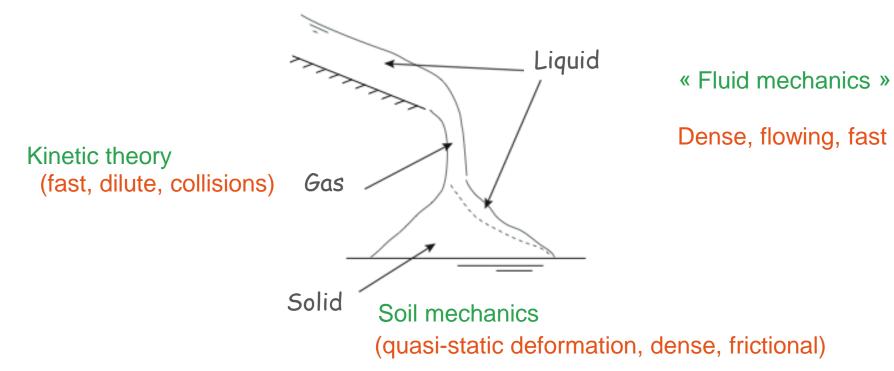


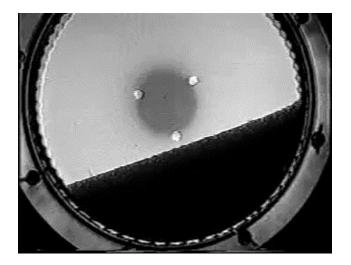
Fabric tensors to describe the anisotropy of contacts orientation, of contact forces, ...

Dispersion in granular media

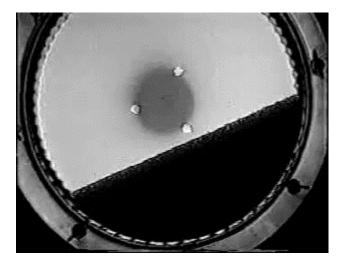
- **Granular media**
- Rheology
- Diffusion
- Segregation

BETWEEN SOLID AND LIQUID



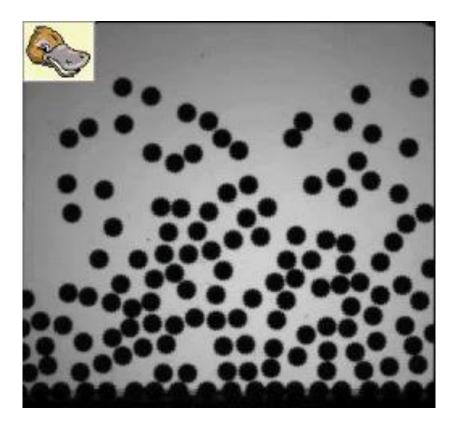


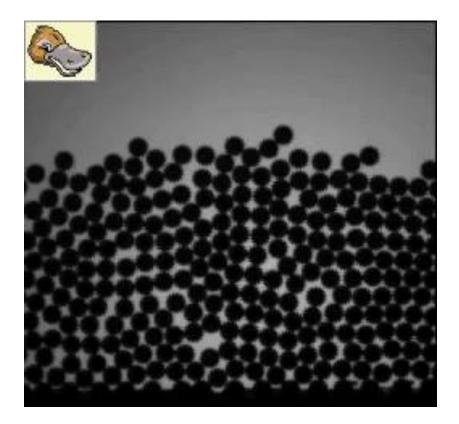
Avalanches



Continuous flow

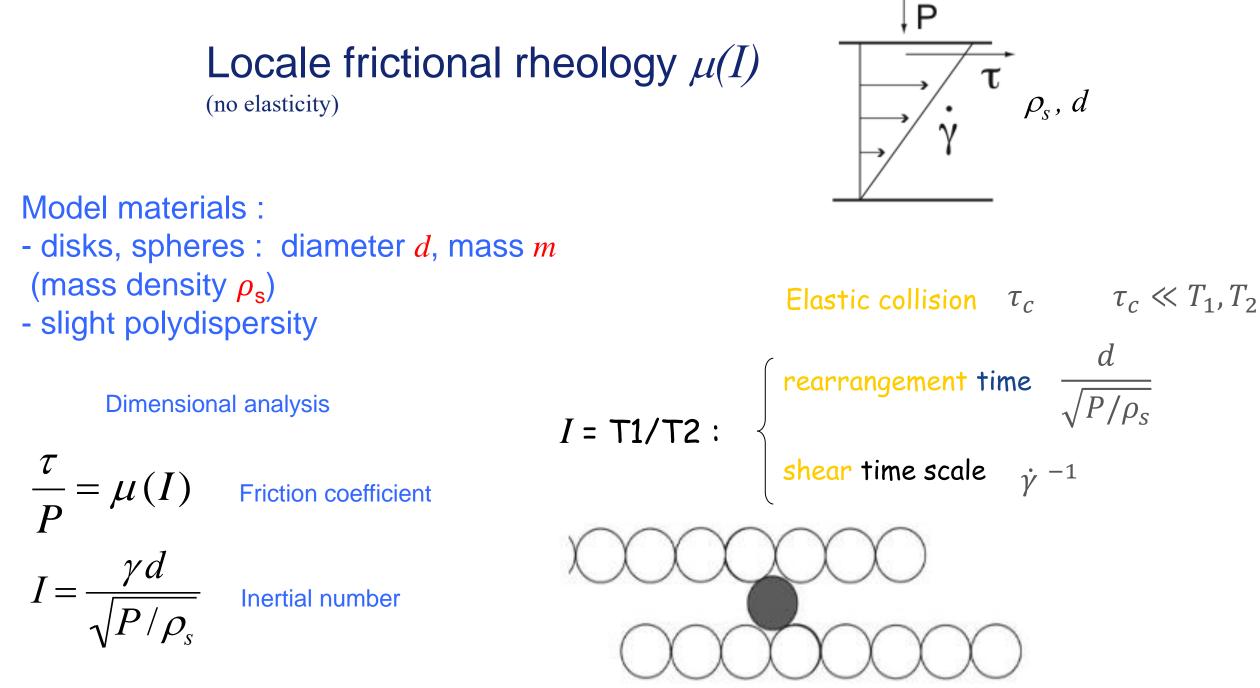
FLOW REGIMES



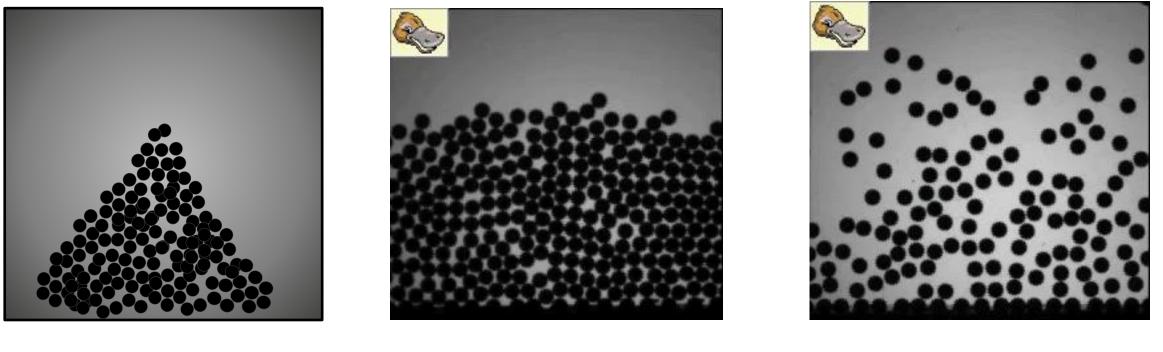


Dilute

Dense



 $I = \frac{\gamma d}{\sqrt{P/\rho_s}} \quad 0.1$ FLOW REGIMES 0,01 1 0



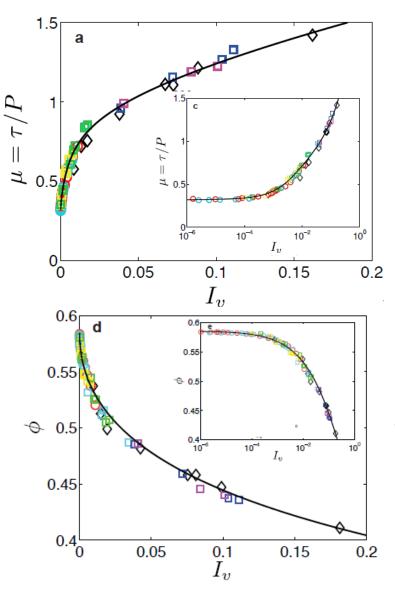
Solid

Liquid

Gas

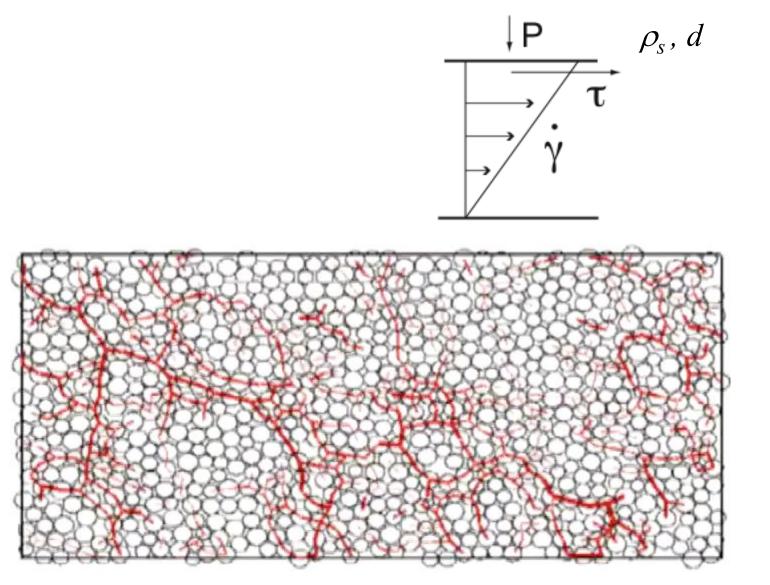
For dense suspensions? (at low Reynolds without inertia)

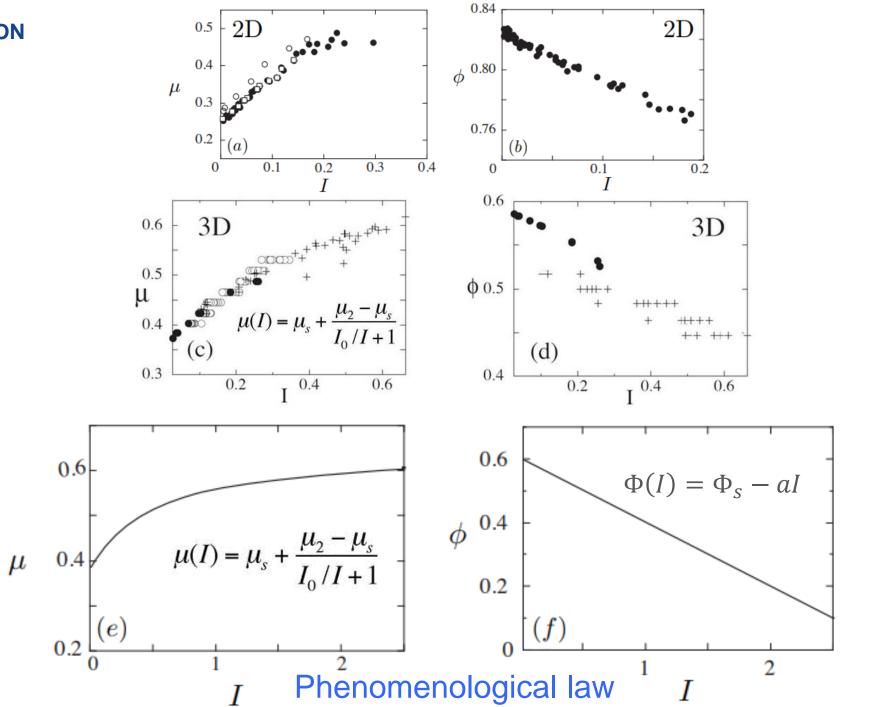
 $t_{micro} = \frac{\eta_f}{P^p}$ $I_v = \frac{\eta_f \dot{\gamma}}{P_p}$ $\tau = \mu(I_v)P_p$ $\phi = \phi(I_v)$



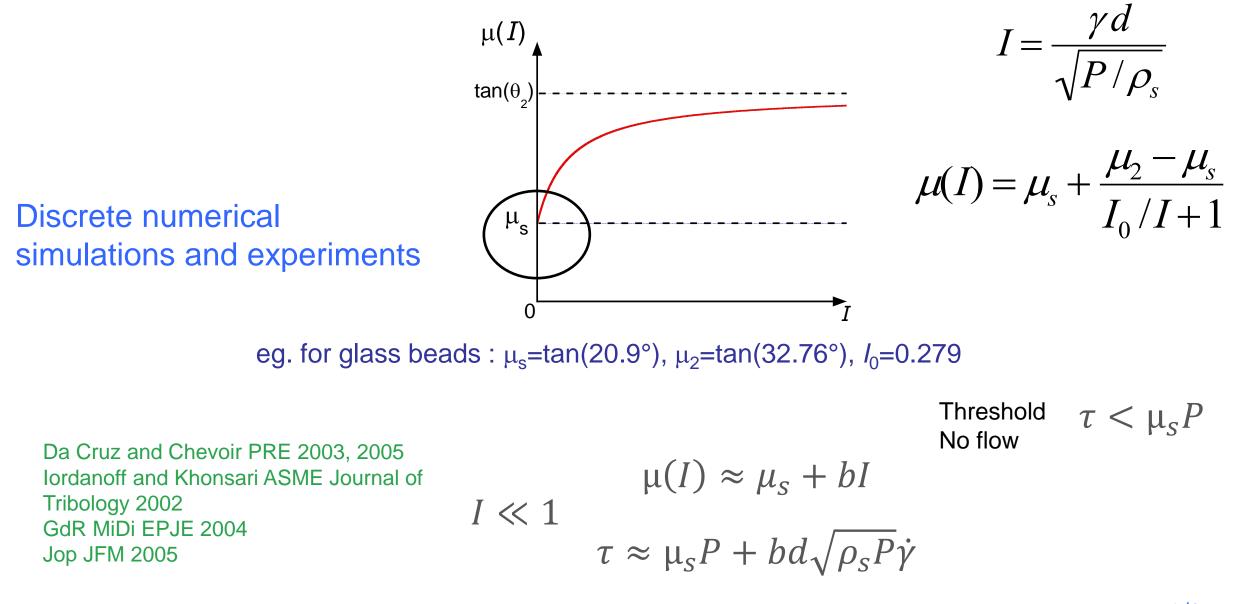
Boyer, PRL 2011

Controlled pressure and shear rate Discrete numerical simulation





CONSTITUTIVE LAW FOR GRANULAR FLOW: $\mu(I)$ RHEOLOGY



Viscoplastic material, $\eta \propto P^{1/2}$!

HOW TO MEASURE THIS RHEOLOGY

Shear experiment

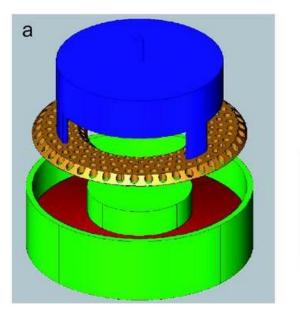
Controlled pressure (variation of volume fraction)

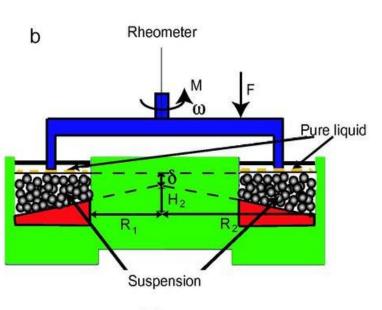
$$\begin{split} \Phi &= \Phi(I) & \Phi(I) = f_1^{-1}(1/I^2) \\ \tau &= \mu(I)P & \mu(I) = I^2 f_2(f_1^{-1}(1/I^2)) \end{split}$$

Controlled volume (fixed volume fraction)

$$\tau = f_1(\Phi)\rho_s d^2 \dot{\gamma}^2 \qquad \begin{array}{c} f_1 \\ f_2 \\ f_2 \\ f_3 \\ f_4 \\ f_6 \\ f_$$

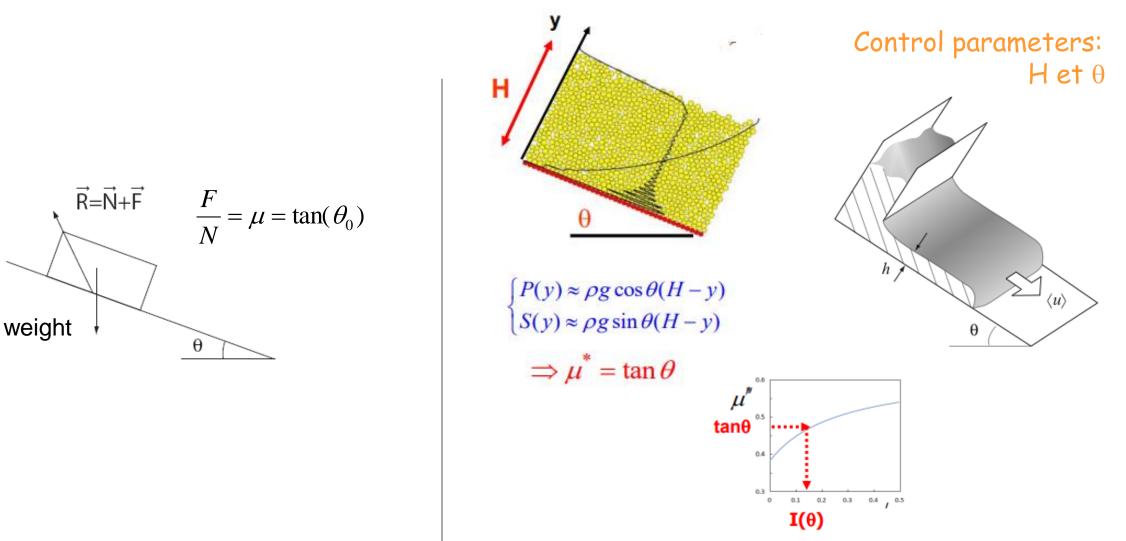
=> Fixed friction coefficient





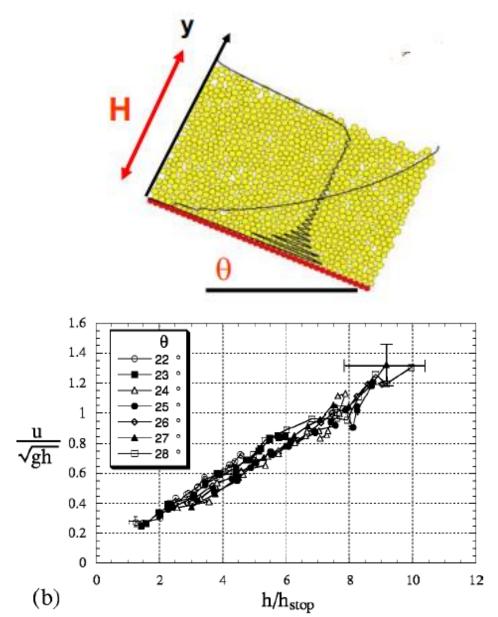
HOW TO MEASURE THIS RHEOLOGY Steady flows on inclined plane

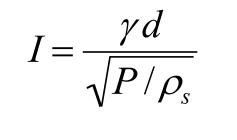
SOLID FRICTION / GRANULAR FLOW



The inclined plane is a **rheometer**!

INCLINED PLANE FLOWS: VELOCITY PROFILE

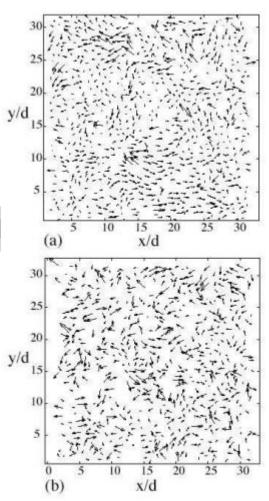




$$\Rightarrow \dot{\gamma}(y) \propto I(\theta)(H-y)^{1/2}$$

$$\Rightarrow u(y) \propto I(\theta) \left[H^{3/2} - (H - y)^{3/2} \right]$$

Bagnod velocity profile (1954)



fluctuations

Pouliquen PRL 2004

2D equation for a visco-plastic fluid

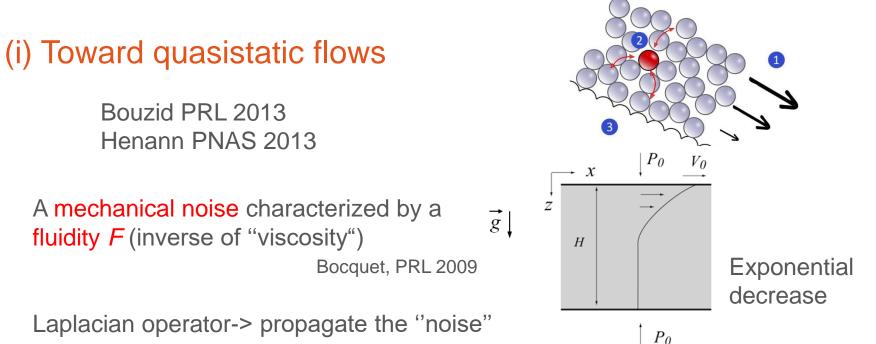
$$\begin{split} &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial z} = 0,\\ &\rho_s \phi \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial z} \right) = \rho_s \phi g \sin \theta - \frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z},\\ &\rho_s \phi \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial z} \right) = -\rho_s \phi g \cos \theta - \frac{\partial P}{\partial z} + \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z}, \end{split}$$

$$\tau_{ij} = \frac{\mu(I)P}{\dot{\gamma}} \dot{\gamma}_{ij} \qquad \qquad I = \frac{\dot{\gamma}d}{\sqrt{P/\rho_s}}$$

Pressure dependent viscosity

Jop Nature 2006

Limit of the model



 $l^2 \Delta F = F - F_{bulk}(local)$

It reproduces finite size effects

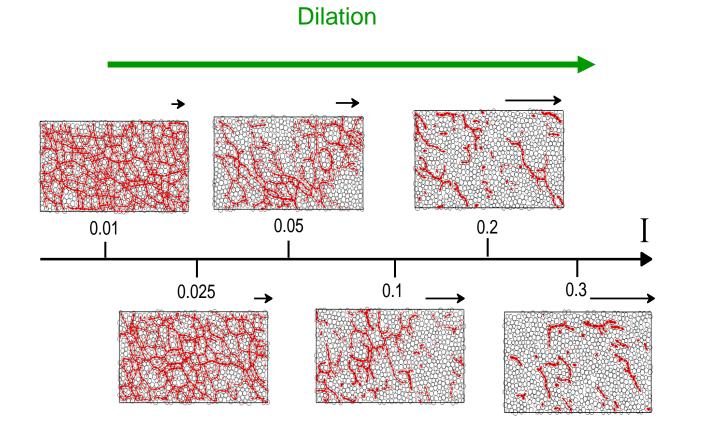
(deformed velocity profiles, jamming, ... Important for applications: silos, proppants)

Jop, CR Physics, 2015

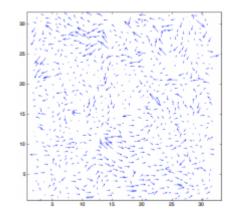
(ii) Toward collisional regime

Large fluctuations of velocities δV "Granular temperature" T~ δV^2

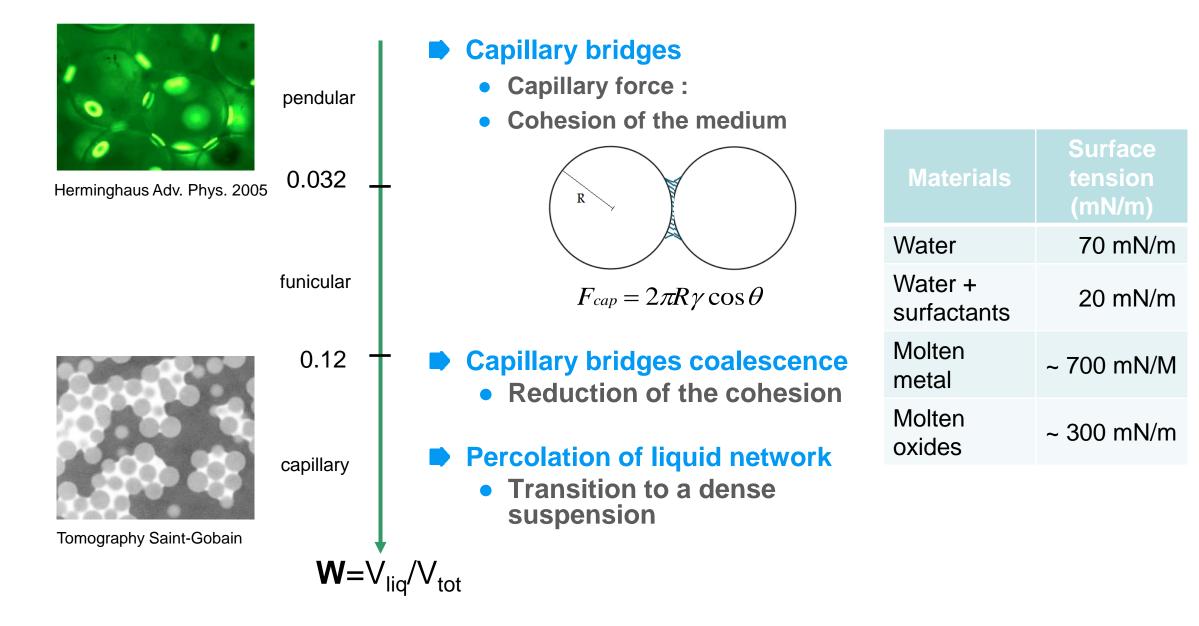
BEYOND THE AVERAGE BEHAVIOUR: CONTACT FORCES, VOLUME FRACTION, FLUCTUATING DISPLACEMENT



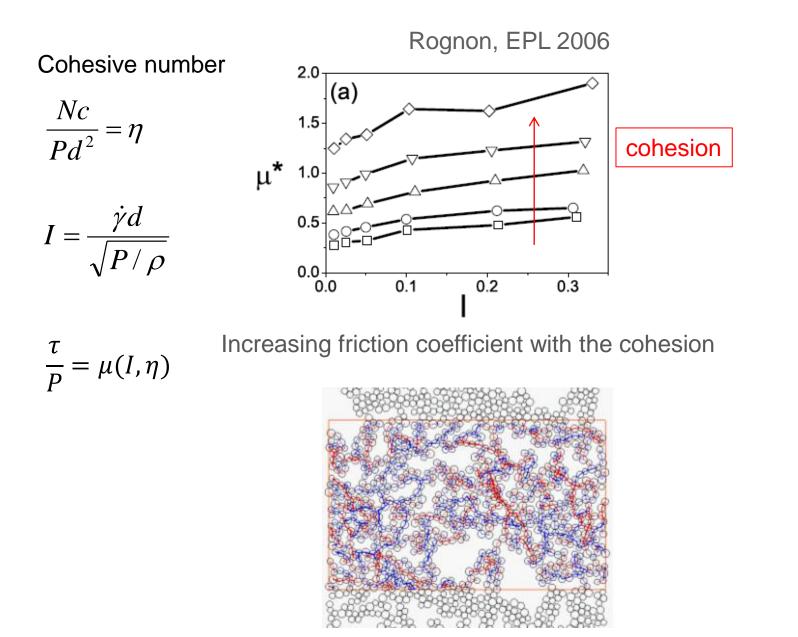
Fluctuations around the mean velocity



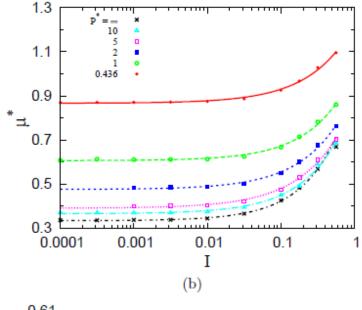
Properties of wet granular matter

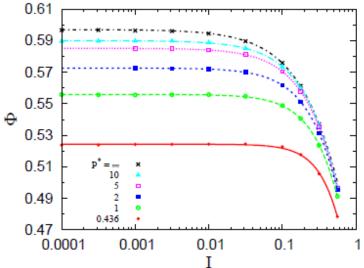


Fully cohesive granular flows

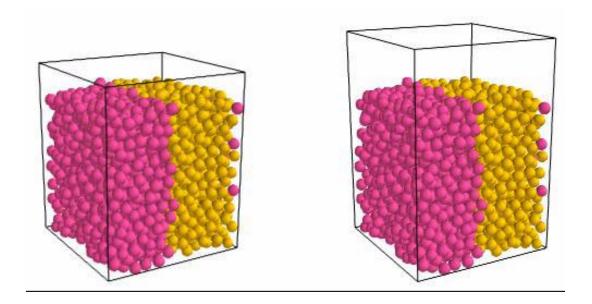


Khamseh 2013, 2015





MIXING GRAINS AT LOW SHEAR RATE



Dispersion in granular media

- **Granular media**
- Rheology
- Diffusion
- Segregation

Granular diffusion

No thermal agitation

Collisions between grains: random direction around the mean velocity. Length l = d, frequency $v = \delta v/d$

 $D = l^2 v$

Dimensional analysis: In a simple shear flow

1 -

$$D \sim \dot{\gamma} d^2$$

$$D\sim d^2\dot\gamma f(\phi)$$
 (Savage 1993)

$$D \sim d^2 \dot{\gamma} f(I)$$
 $I = \frac{\gamma d}{\sqrt{P/\rho_s}}$

Granular diffusion

Peclet number

Collisions between grains: random direction around the mean velocity. Length l = d, frequency $v = \delta v/d$

$$P_e \sim \frac{UL}{D} \sim \frac{\dot{\gamma}hL}{D} \sim \frac{hL}{d^2}$$

Dimensional analysis: hI D^2 Flow around an intrude

er
$$\Pi L \sim K$$

 $h \sim 10d$ Size of shear bands

Size of a cluster

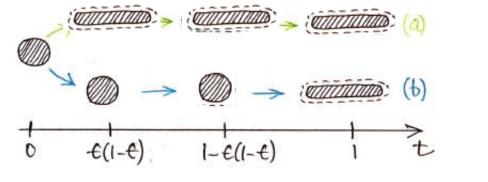
$$hL \sim s_0^2$$

 $P_{e} \sim 10 - 1000$

Independancy on $\dot{\gamma}$

$\tau = \int_0^1 dt' \frac{D}{s^2(t')}$ **Diffusive profile during advection** $\sigma_{\xi} \approx \frac{1}{\sqrt{4\tau}}$ Does history matter? 100 CTC DITTO TO S/S0 **Classical diffusion** 6 0 0.1 0.5 £ t 0.1 -€(1-€) 1-€(1-€) 0 6 0.09 0.91 1

Villermaux, Ann. Rev. 2019

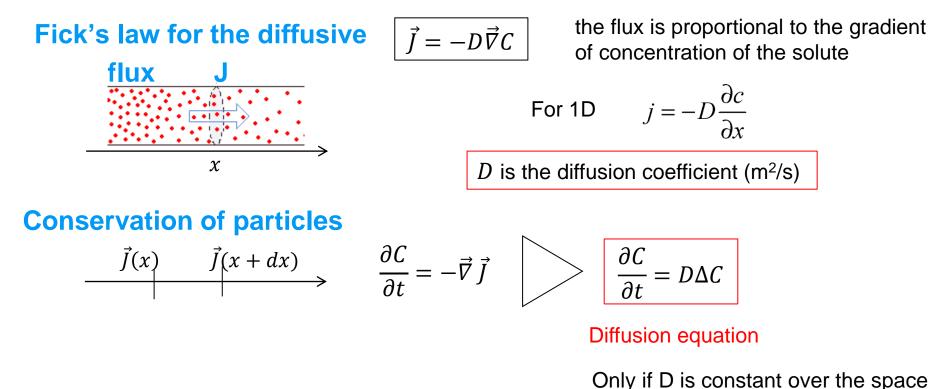


Granular diffusion

D = cst

NOT in Villermaux, Ann. Rev. 2019

Equation of diffusion



When D depends on space:

$$\frac{\partial C}{\partial t} = \frac{\partial D}{\partial x} \frac{\partial C}{\partial x} + D\Delta C$$

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = \frac{\partial D}{\partial x} \frac{\partial C}{\partial x} + D\Delta C$$

1D Advection - Diffusion equation

Origin of the granular diffusion:

Diffusive motion at large time:

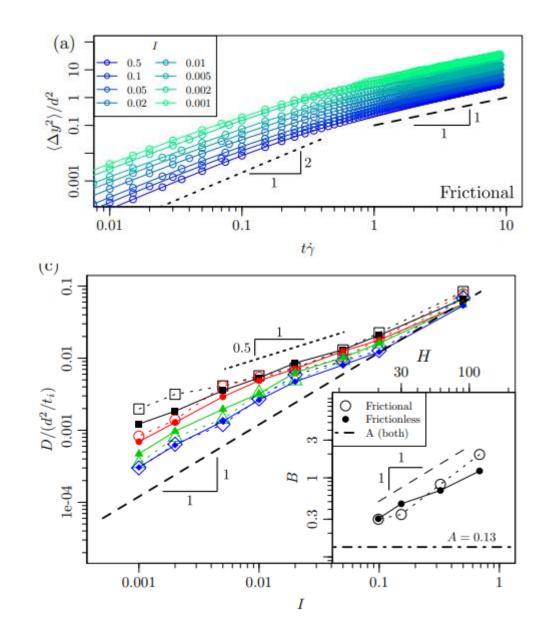
Diffusion coefficient increases at low inertial number

$$D = A\dot{\gamma}d^2$$

$$\frac{D}{\frac{d^2}{t_p}} = A\dot{\gamma}t_p = AI$$

OK at low and high Inertial number A~0.1 for large I A~1 for low I

Different scaling in intermediate inertial number

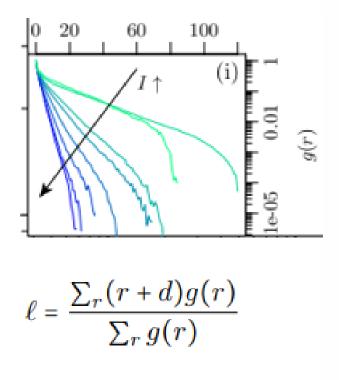


(Kharel PRL 2017)

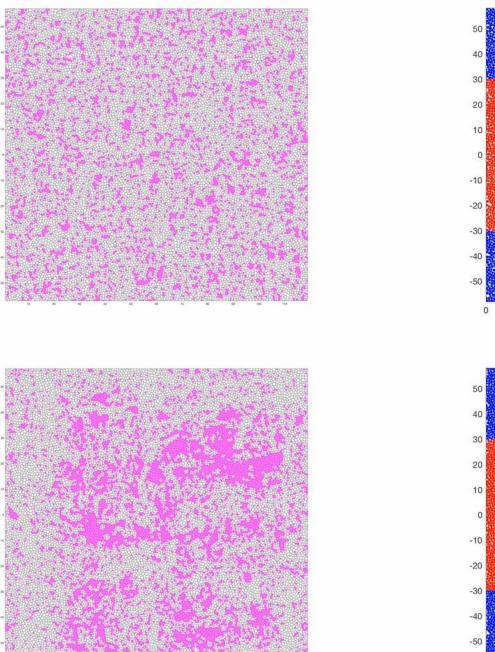
Correlated movements

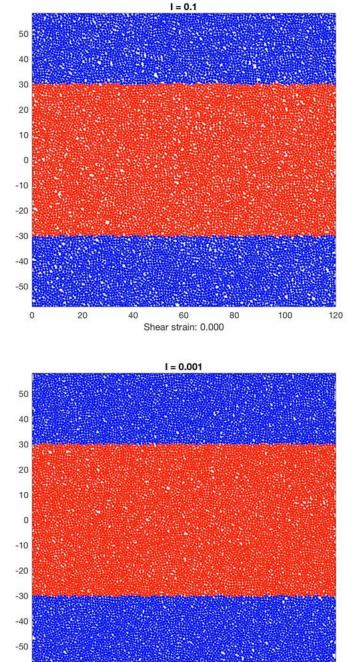
Clusters defined on correlated movements:

g(r) correlation function: Probability that a grain belongs to the same cluster



(Kharel PRL 2017)





Granular vortices (left) and Mixing (right) in Plane Shear Flow of "Frictional" Grains Shear strain: 0.000

0

20

40

60

80

100

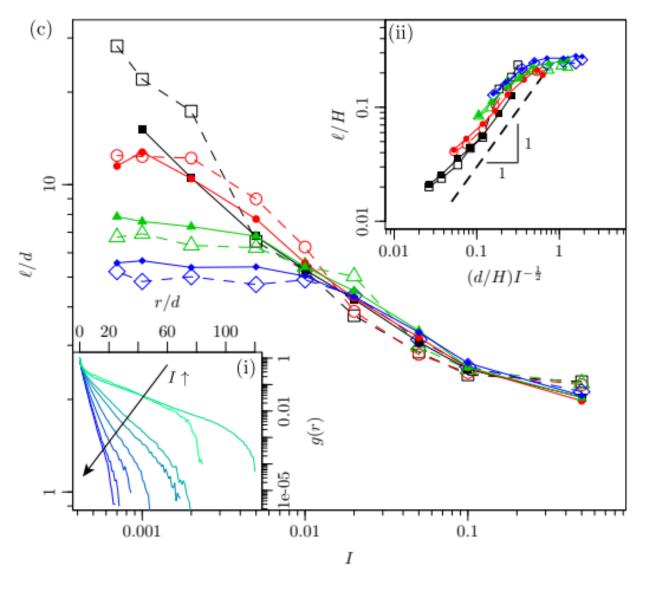
120

Correlated movements

Clusters defined on correlated movements:

Scaling of the length at intermediate I

 $\frac{l}{d} \propto \frac{1}{\sqrt{I}}$

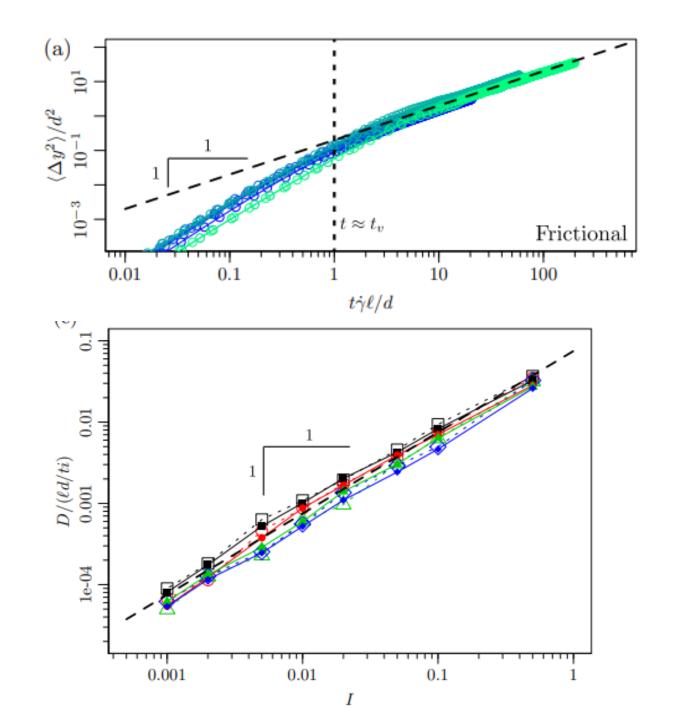


(Kharel PRL 2017)

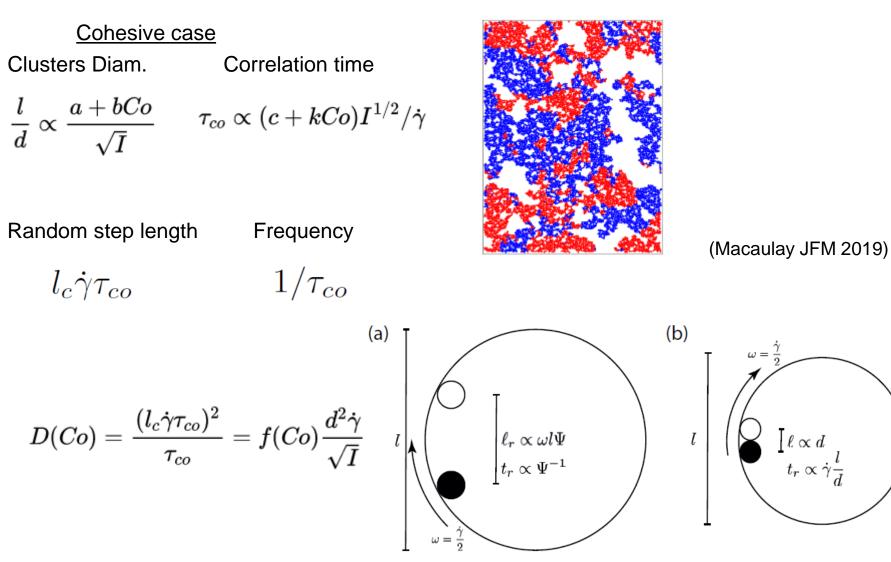
Clusters defined on correlated movements:

Simulation facts: Length Vortex life time $rac{l}{d} \propto rac{1}{\sqrt{I}}$ $t_v \propto rac{d}{\dot{\gamma}\ell}$ $D \propto \frac{d^2}{t_v}.$ $D\sim rac{d^2\dot\gamma}{\sqrt{I}}$

(Kharel PRL 2017)

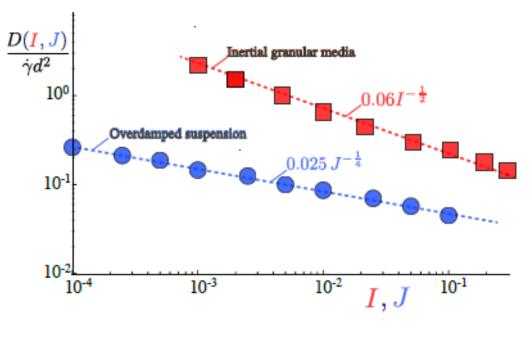


Correlated movements



 $\int \ell \propto d \\ t_r \propto \dot{\gamma} \frac{l}{d}$

in suspension?



courtesy of Bloen

Seems to governed finally by the volume fraction

Granular diffusion with constant D

Cohesive grains

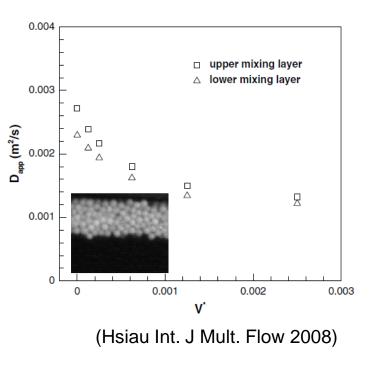
The diffusion coefficient decreases with the volume of added liquid.

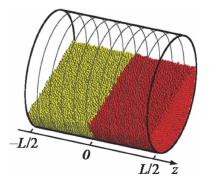
Bond Number. Capillary force to the weight of the particle

$$Bo=rac{\pi\sigma d\coslpha}{rac{1}{6}\pi g d^3
ho}$$

Cohesion Number Capillary force to the pressure

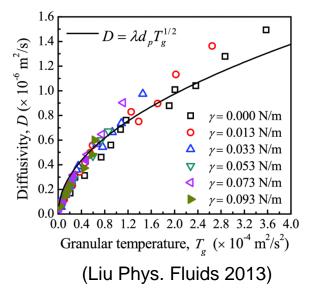
 $Co = rac{\pi\sigma d\coslpha}{\pi d^2 P}$





The fluctuations decreases with the volume of the liquid: « longer spring », and viscous dissipation

$$T_g = \frac{1}{3} \left\langle |\mathbf{v} - \langle \mathbf{v} \rangle |^2 \right\rangle$$



Take home messages

- Inertial number governes the flow of granular media
- Diffusion of the grains is related to the shear rate at first order
- The precise history of the streching should not be critical.

Dispersion in granular media

- Granular media
- Rheology
- Diffusion
 - Diffusion
 - Some flows
- **Segregation**

Type of industrial mechanical mixers

- **Passive mixers :** e.g. kenics mixer
- Active mixers :
 - Double shafts
 - Planetary movement
 - Spatial homogeneity: scrape the borders

• Impellers

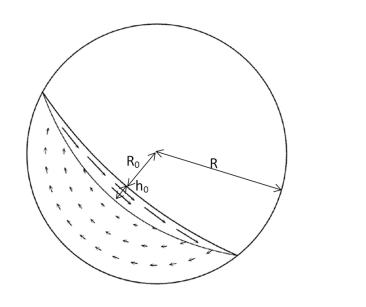
• Specific for grains

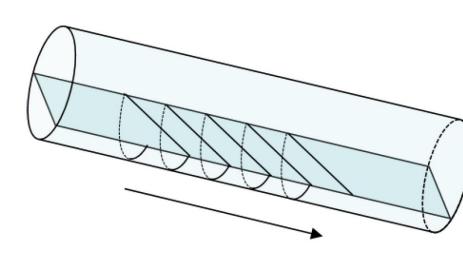
Guntert & Zimmerman TSM Series Twin Shaft Compulsory Hixing System

Curing materials in open flows

Grains and powders

- Rotating kiln
- Powders
- Hot temperature
- Sintering



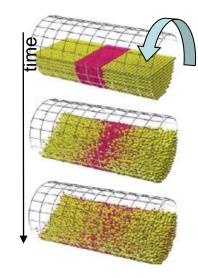


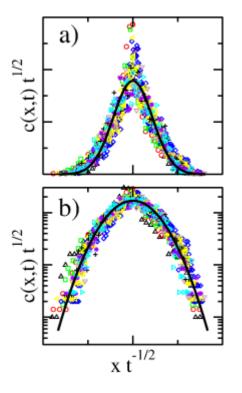
Axial dispersion in the rotating drum

- Three origins of the dispersion of the grains
 - the intrinsic horizontal diffusion,
 - a geometrical effect linked to the shape of the flowing layer and the oblique path of the grains,
 - a coupling between the velocity field and the vertical diffusion: the Taylor-Aris dispersion

Dispersion in horizontal drum $c(x,t) = \frac{1}{\sqrt{4\pi D(\beta,\omega,h,...)t}} \exp\left(\frac{-(x-V_{ax}t)^2}{4D(\beta,\omega,h,...)t}\right)$ $w = \sqrt{DL}$

Horizontal diffusion coefficient:





Taberlet PRE 2006

Axial dispersion in the rotating drum

Horizontal diffusion of cohesive grains

Spreading of impacting agglomerates

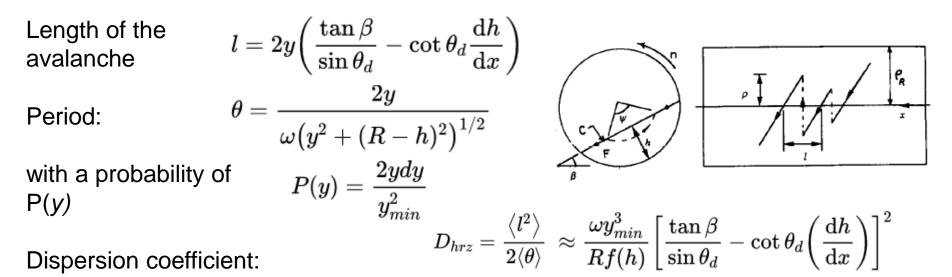
The potential energy: $E_{
m pot} \sim
ho \phi d_{aggl}^3 g R$

Breaking energy of the agglomerate:

$$E_{
m \, break} \, \sim F_c Z \phi rac{d_{aggl}^2}{d^2}$$

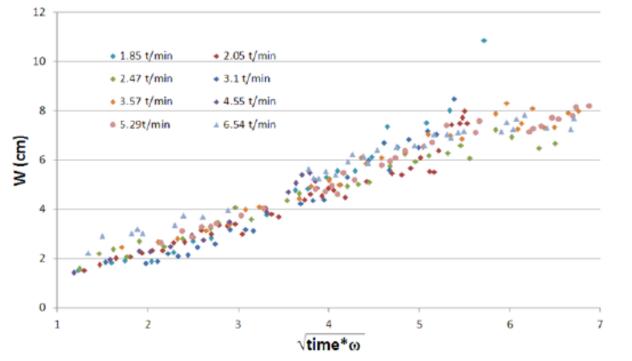
Large aggregates break
$$d_{aggl} > rac{F_c Z}{
ho g R d^2}$$

Influence of the geometry



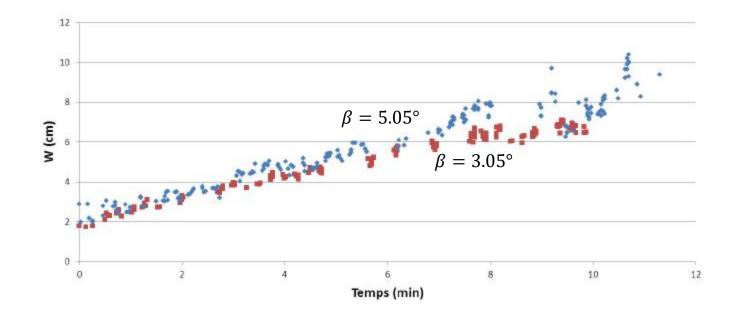
Fact checking: Experiments

- The diffusion of colored grains in inclined cylinder:
 - The grains diffuse during the transport.
 - The diffusion is controlled by the rotation rate



Role of the inclination

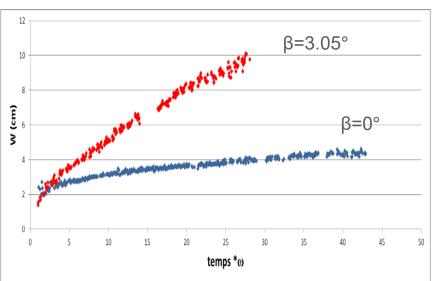
Again, the diffusion is controlled by the time



$$W = \sqrt{\frac{D_{i0} \sin \beta_0}{\sin \beta_r}} l$$

SAINT-COBAIN

But

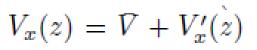


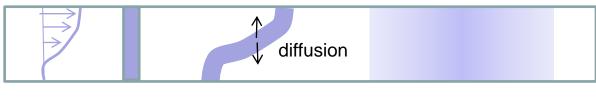
- Diffusion is controlled by the time spent by
 grains in successive avalanches
 - But what is the underlying mechanism?
 - Only dispersion of granulates during avalanches in the surface layer?
 - Coupled with longitudinal transport?

Axial dispersion in the rotating drum

Concentration of the tracers

 $c(x,z,t) = \bar{c}(x,t) + c'(x,z,t)$





Conservation of the tracers

$$\frac{\partial c}{\partial t} + V_x(z)\frac{\partial c}{\partial x} = \frac{\partial}{\partial x}\left(D\frac{\partial c}{\partial x}\right) + \frac{\partial}{\partial z}\left(D\frac{\partial c}{\partial z}\right)$$

$$\frac{\partial \bar{c}}{\partial t} + \frac{\partial c'}{\partial t} + V_x \frac{\partial \bar{c}}{\partial x} + V'_x \frac{\partial \bar{c}}{\partial x} + V_x \frac{\partial c'}{\partial x} + V'_x \frac{\partial c'}{\partial x} \\ = \frac{\partial}{\partial x} \left(D \frac{\partial \bar{c}}{\partial x} \right) + \frac{\partial}{\partial x} \left(D \frac{\partial c'}{\partial x} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial \bar{c}}{\partial z} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial c'}{\partial z} \right)$$

 $\bar{c} \gg c'$

$$t \gg e^2/\bar{D} \quad l/\bar{V}_x \gg e^2/\bar{D} \qquad \qquad \frac{\partial \bar{c}}{\partial t} + \bar{V}_x \frac{\partial \bar{c}}{\partial x} + \bar{V}'_x \frac{\partial c'}{\partial x} \approx D \frac{\partial^2 \bar{c}}{\partial x^2}$$

Axial dispersion in the rotating drum

$$\begin{aligned} \frac{\partial c'}{\partial t} + \bar{V}_x \frac{\partial c'}{\partial x} + V'_x \frac{\partial \bar{c}}{\partial x} + V'_x \frac{\partial c'}{\partial x} - \overline{V'_x \frac{\partial c'}{\partial x}} \\ &= \frac{\partial}{\partial x} \left[(D - D) \frac{\partial \bar{c}}{\partial x} \right] + D \frac{\partial^2 c'}{\partial x^2} + \frac{\partial}{\partial z} \left(D \frac{\partial c'}{\partial z} \right) - \frac{\partial}{\partial x} \left(D \frac{\partial c'}{\partial x} \right) \end{aligned}$$

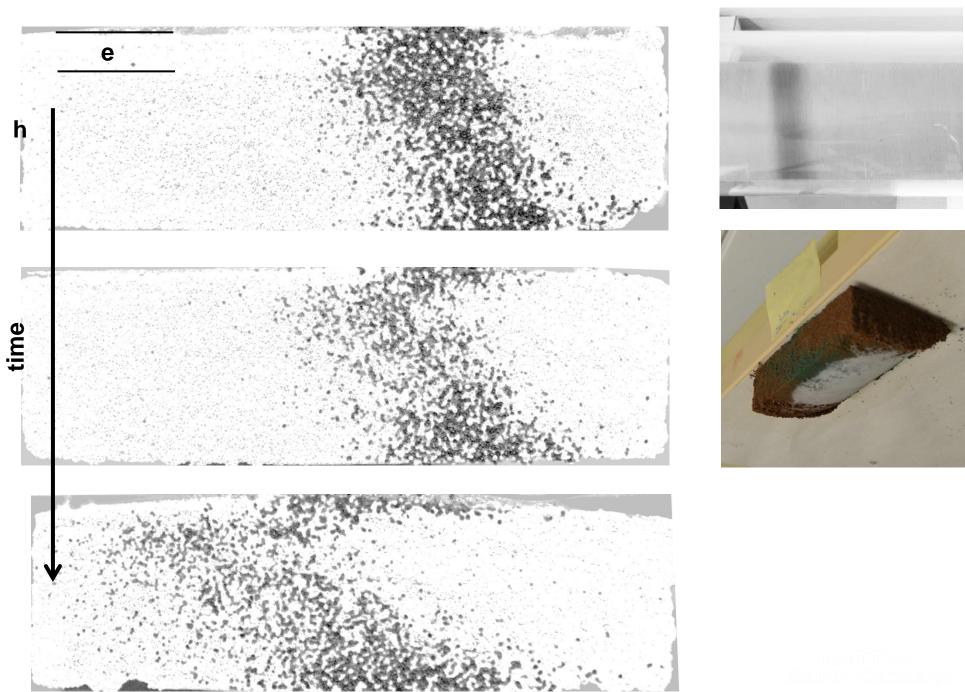
$$\overline{V_x'\frac{\partial c'}{\partial x}} = \frac{\partial^2 \bar{c}}{\partial x^2} \left[\overline{V_x'(z) \int_0^z \frac{1}{D} \int_0^{z_1} V_x'(z_2) dz_2 dz_1} \right] = D_{shr} \frac{\partial^2 \bar{c}}{\partial x^2}$$

$$\frac{\partial \bar{c}}{\partial t} + \bar{V}_x \frac{\partial \bar{c}}{\partial x} = D_{eff} \frac{\partial^2 \bar{c}}{\partial x^2},$$
 with, for a linear shear:

$$D_{eff} = D_{hrz} \left[1 + \frac{\dot{\gamma}^2 e^4}{30D_{hrz}^2} \right] = D_{hrz} \left[1 + \frac{Pe^2}{30} \right]$$
 P

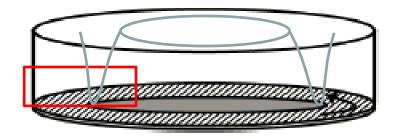
$$Pe \approx rac{\dot{\gamma}}{\dot{\gamma}_y} rac{e^2}{d^2}$$

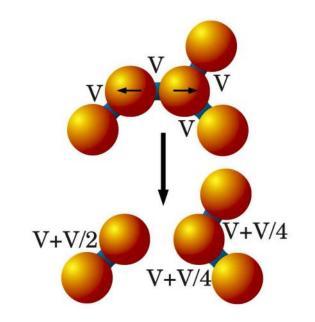
Christov Gran. Matter 2014

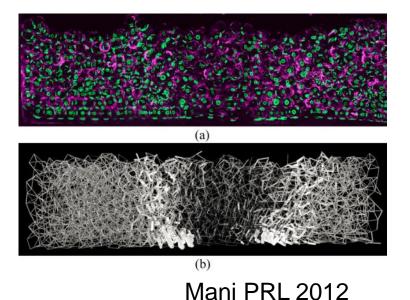


Spreading the liquid by shearing the grains

- Rupture of the bridges in 2 identical volumes
- Swelling of the thin films that allows a <u>fast</u> redistribution according the pressure gradients $\Delta V_i = (\gamma/r P_i) / L_i$
- Creation of a bridge
- Viscous relaxation toward equilibrium
 - $\partial_{t}V_{j} = \mu \Sigma_{j}(Pi Pj)$
 - it takes some times,
 - Steady state depending on the shear rate







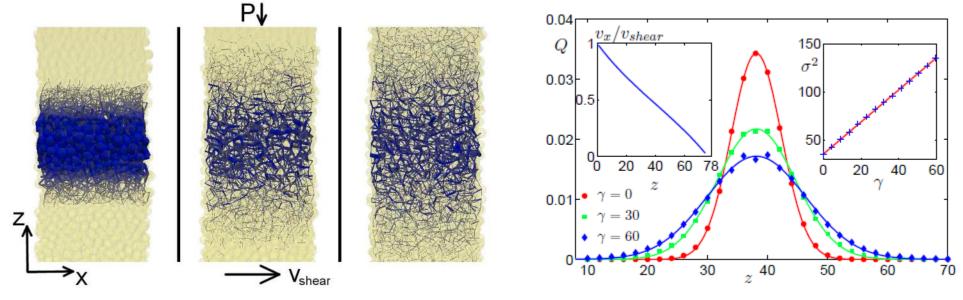
Diffusion of the volume of the liquid bridges

Flux of liquid in a slice of material

 $Q^{i}(t+dt)-Q^{i}(t) = Adt (B^{i-1}Q_{b}^{i-1} + B^{i+1}Q_{b}^{i+1} - 2B^{i}Q_{b}^{i})/2$

• "Diffusion" like equation $\partial_t Q_b = C \frac{\partial}{\partial z^2} (\dot{\gamma} Q_b)$ B: rate of rupture Q_b: average volume per bridge

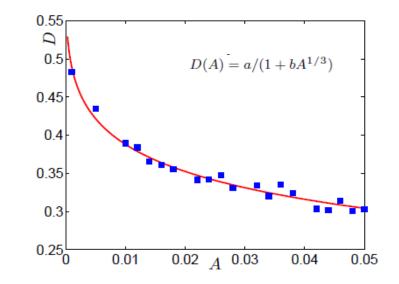
Neglecting the cohesion (P>>1, I<<1), linear velocity profile</p>



Mani PRL 2012

Influence of the amount of liquid on the spreading

- the amplitude of the initial distribution A
 - $\mathbf{A} \propto \mathbf{V} \approx \mathbf{Q}$
 - Rupture distance: $s_c \approx V^{1/3}$
 - The time for rupture increases with s_c:
 - $\mathbf{T} \propto \dot{\gamma}^{-1} (\mathbf{1} + sc/\mathbf{r})$



Application :

- Coating of grains,
- e.g. closing open porosity with a polymer on beads

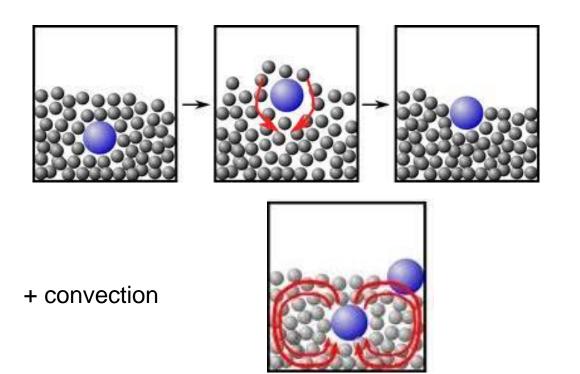
Dispersion in granular media

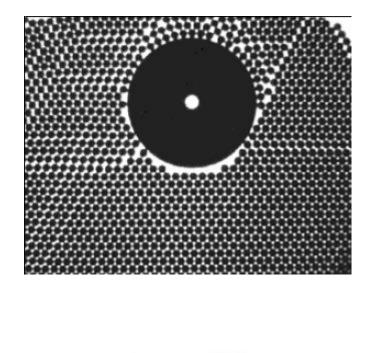
- **Granular media**
- Rheology
- Diffusion
- Segregation

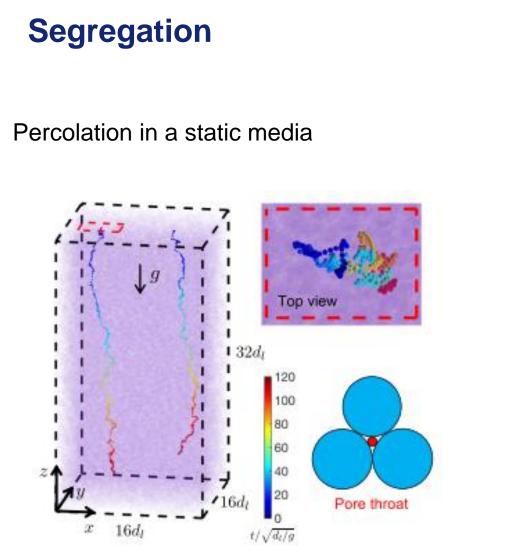
Steric effect

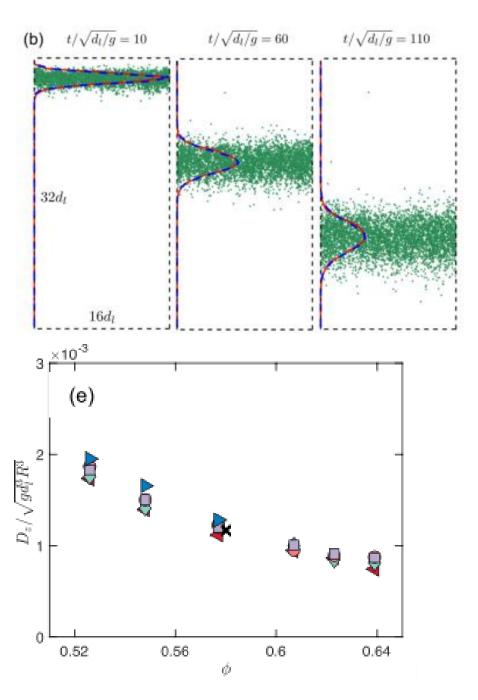
Large grains can not fill the space

But the small ones



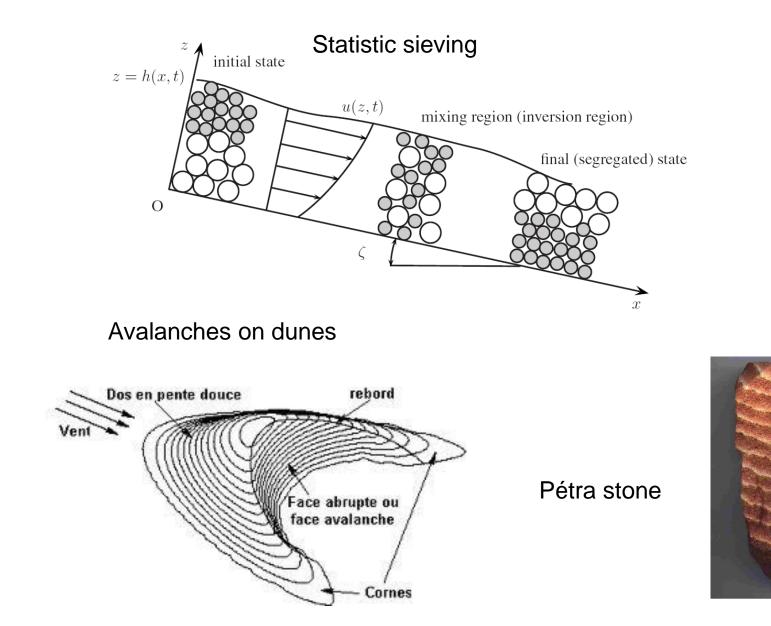






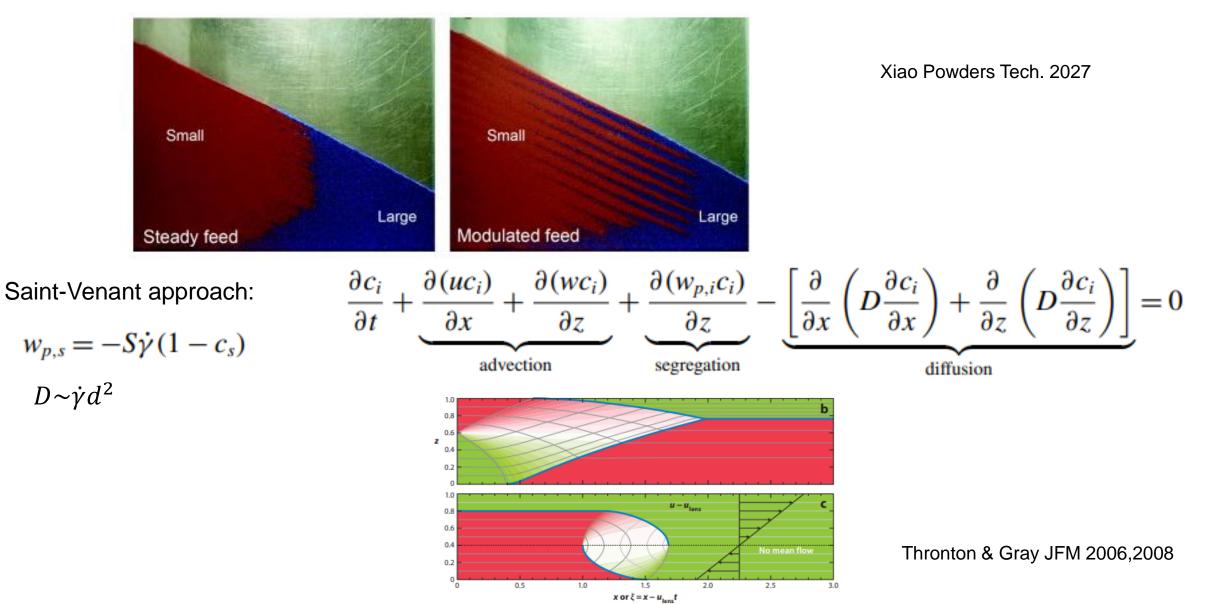
Gao PRE 2023

Segregation during a flow



Segregation in pile flow

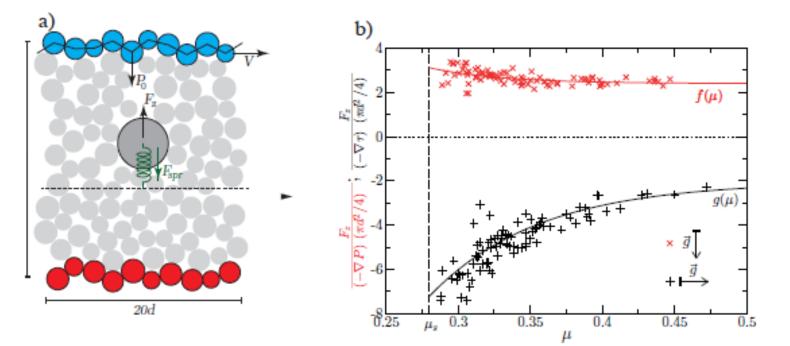
Interplay with the flow rate and the segregation



Segregation in a shear flow

Interplay with the flow rate and the segregation

Mechanical approach:

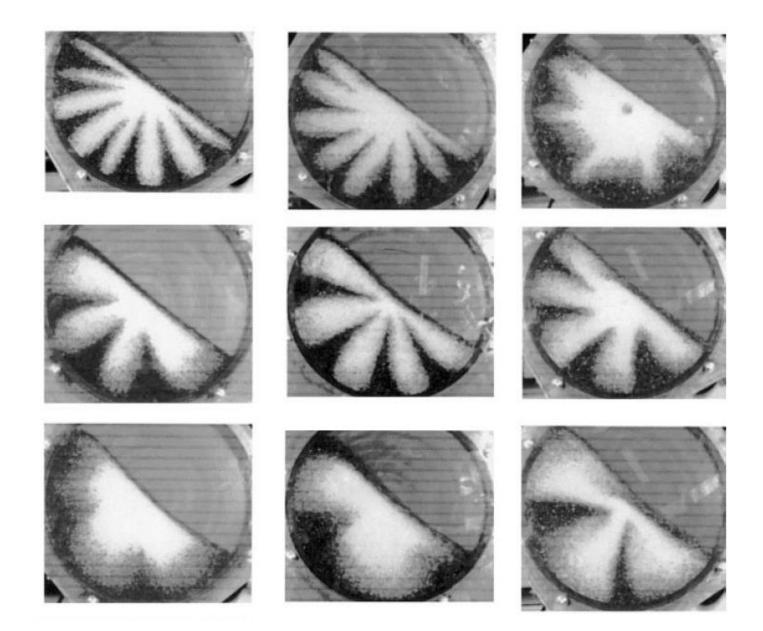


Guillard JFM 2016

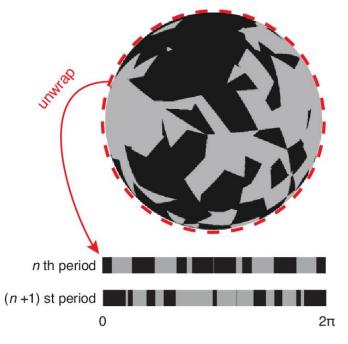
Segregation in rotating drum

Equilibrium position from a balance between buoyancy and weight

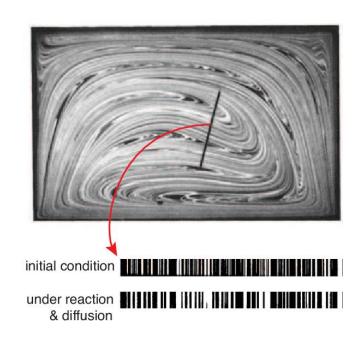




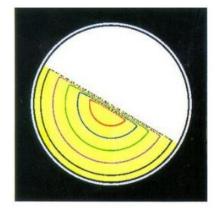
Cutting and shuffling strategy / streamlines jumping



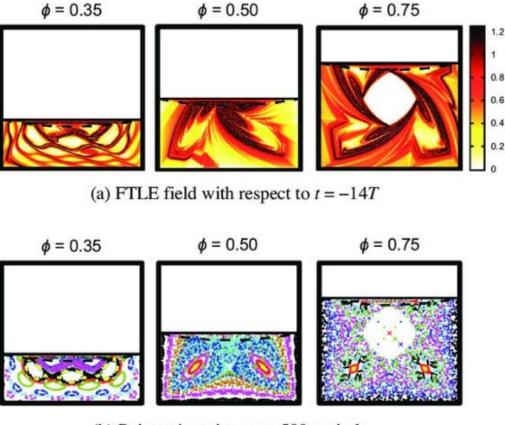
(a) bottom view of a granular mixing PWI simulation in a sphere



(b) fluid mixing experiment in a cavity with moving top wall







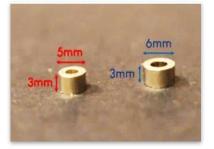
(b) Poincaré section over 500 periods

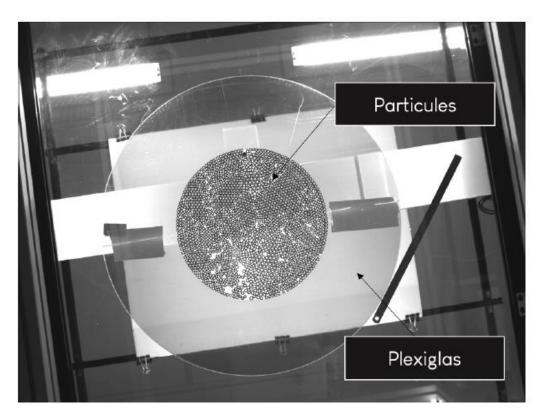
Christov POF 2011

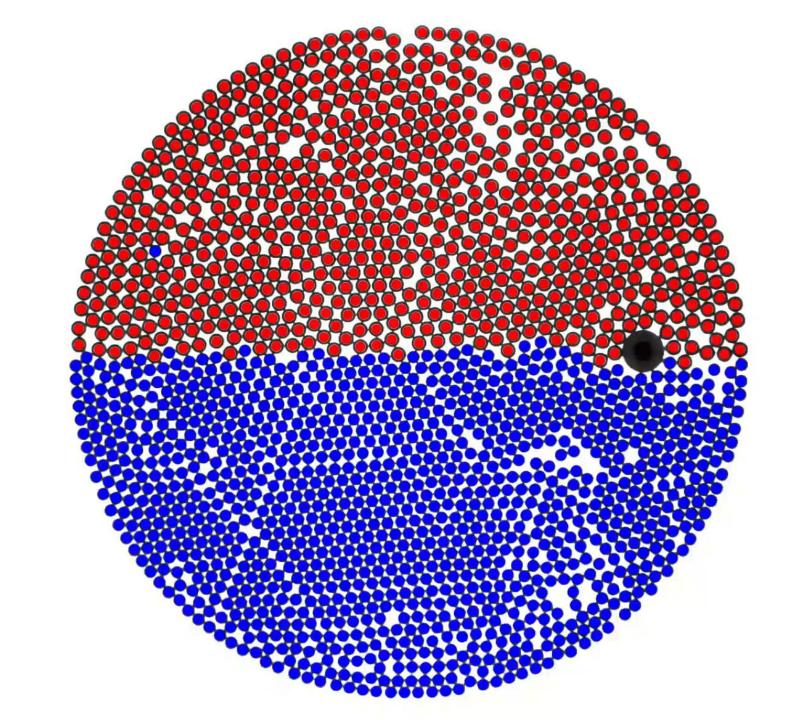


MIXING IN A 2D GRANULAR SYSTEMS : 2D SYSTEMS

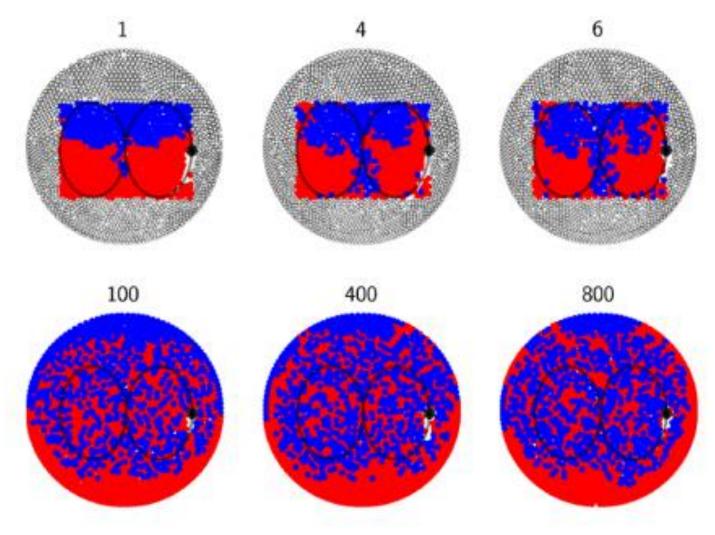
Intruder **Glass plate** Cylinders Camera



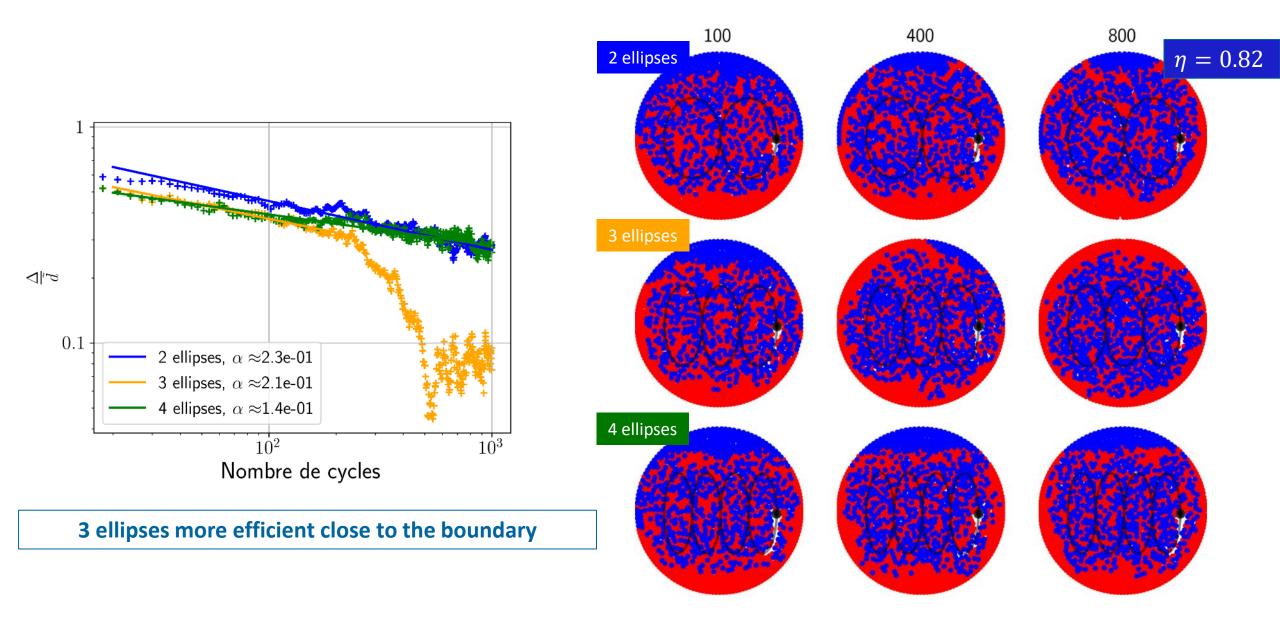




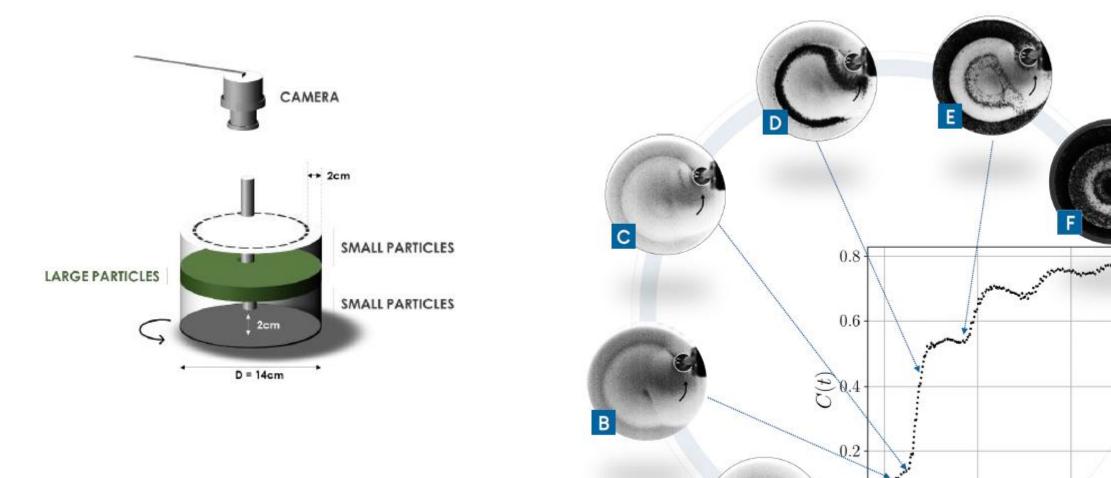
Example of large (blue) and small (red) segregated system that tends to homogenise with the number of



ROLE OF THE VELOCITY FIELD



SEGREGATION



6

A

0.0

0

1000

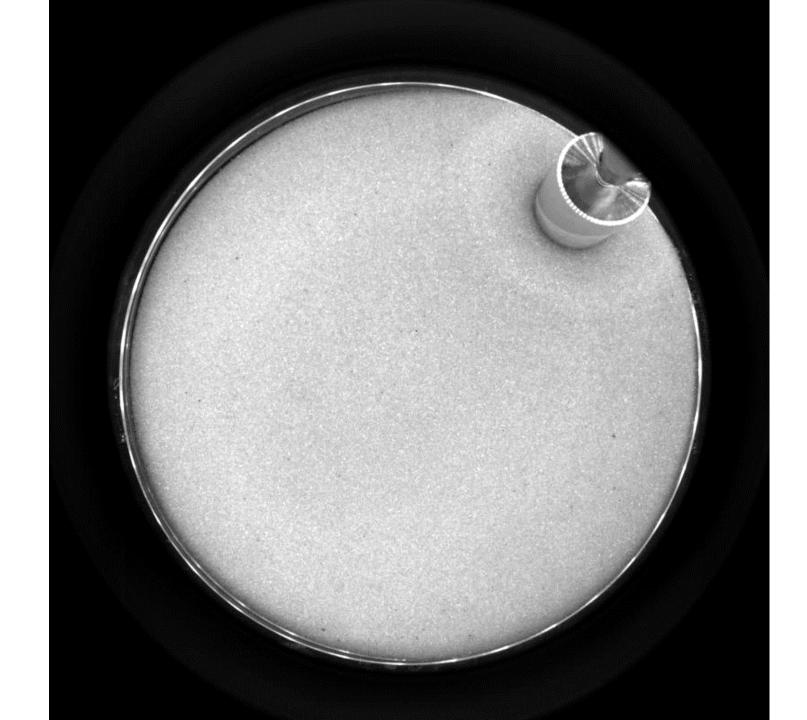
2000

t(s)

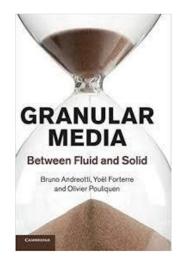
3000

-instant

Mayeden EPJ 2021



Reference : Andreotti B., Forterre Y., Pouliquen O. (2013) GranularMedia; BetweenFluidand Solid, Cambridge UniversityPress



Take home messages

- Dispersion in granular media is coupled with the flow
- Granular media can be the substrate for other processes (chemical reactions, ...)
- Homogeneization processes should often conteract segregation phenomonon
- Smooth complex flows are much less studied in the context of « mixing ».

